1,332 research outputs found

    Radiation Damage of F8 Lead Glass with 20 MeV Electrons

    Full text link
    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.Comment: 5 pages, 6 figure

    Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices

    Get PDF
    This paper addresses the problem of accelerating large artificial neural networks (ANN), whose topology and weights can evolve via the use of a genetic algorithm. The proposed digital hardware architecture is capable of processing any evolved network topology, whilst at the same time providing a good trade off between throughput, area and power consumption. The latter is vital for a longer battery life on mobile devices. The architecture uses multiple parallel arithmetic units in each processing element (PE). Memory partitioning and data caching are used to minimise the effects of PE pipeline stalling. A first order minimax polynomial approximation scheme, tuned via a genetic algorithm, is used for the activation function generator. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design

    Field corn response to nitrogen as affected by previous winter crop

    Get PDF
    Testing double cropping systems in the irrigated areas of the Pacific Northwest led us to evaluate late-planted corn response to N fertilizer when following either a winter cereal grown for silage or winter peas plowed down as green manure

    Vanishing Gamow-Teller Transition Rate for A=14 and the Nucleon-Nucleon Interaction in the Medium

    Get PDF
    The problem of the near vanishing of the Gamow-Teller transition (GTGT) in the A=14 system between the lowest J=0+ T=1J=0^+~ T=1 and J=1+ T=0J=1^+~ T=0 states is revisited. The model space is extended from the valence space (p−2)(p^{-2}) to the valence space plus all 2ℏω\hbar \omega excitations. The question is addressed as to what features of the effective nucleon-nucleon interaction in the medium are required to obtain the vanishing GTGT strength in this extended space. It turns out that a combination of a realistic strength of the tensor force combined with a spin-orbit interaction which is enhanced as compared to the free interaction yields a vanishing GTGT strength. Such an interaction can be derived from a microscopic meson exchange potential if the enhancement of the small component of the Dirac spinors for the nucleons is taken into account.Comment: RevTex file, 7 pages, four postscript figures. submitted to Phys. Rev. C as a brief repor

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only ∌\sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    Zone-subsoiling effects on infiltration, runoff, erosion, and yields of furrow-irrigated potatoes

    Get PDF
    Soil compaction is a problem in many Pacific Northwest fields. We hypothesized that zone subsoiling would improve potato (Solanum tuberosum L., cv. 'Russet Burbank' ) yield or grade, increase infiltration, and decrease bulk density, runoff, and erosion of furrow-irrigated fields, while maintaining trafficability and irrigability of furrows. A 2 year study was established on a Portneuf silt loam (coarse-silty, mixed, mesic Durixerollic Calciorthids). In the fall, plots were in wheat stubble (1988) or bean stover (1989), and were either disked (10-12 cm ), chiselled (25-30 cm ), or moldboard plowed (20-25 cm ). Fall tillages were split in spring, half of each plot receiving in-row zone subsoiling (46 cm ) after planting potatoes. The effect of zone subsoiling on infiltration in 1989 was small because of variation across fall tillages. In 1990, zone subsoiling increased infiltration by 10% across fall tillages. Erosion decreased up to 278% with zone subsoiling. Zone subsoiling reduced erosion more effectively than it increased infiltration, shown by a two- to three-fold decrease in the sediment loss to water infiltrated ratio. Zone subsoiling increased infiltration and reduced erosion more in 1990 when the study was conducted on a slightly steeper slope with higher water application rates than in 1989. In 1989, zone subsoiling increased the yield of grade 1 tubers by 3.8 t ha-1 (4.6%), but the total yield was not significantly increased. In 1990, zone subsoiling increased the total yield by 4.2 t ha-1 the yield of grade 1 tubers by 5.6 t ha-1 (7.7%). With zone subsoiling, the percentage of large grade 1 market-grade tubers increased by 3.3% in 1989 and 5.7% in 1990. Zone subsoiling requires some extra attention by the irrigator early in the season to insure uniform furrow irrigation, but it can potentially conserve both soil and water while improving grade and yield

    Growth, microstructure, and failure of crazes in glassy polymers

    Full text link
    We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze nucleation, widening, and breakdown for a wide range of temperature, polymer chain length NN, entanglement length NeN_e and strength of adhesive interactions between polymer chains. Craze widening proceeds via a fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length, and the characteristic length of stretched chain segments in the polymer craze is Ne/3N_e/3. In the craze, tension is mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large tensile forces. The failure mode of crazes changes from disentanglement to scission for N/Ne∌10N/N_e\sim 10, and breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsistencies with previous theoretical models of craze widening that were based on continuum level hydrodynamics

    Coupled virus - bacteria interactions and ecosystem function in an engineered microbial system

    Get PDF
    Viruses are thought to control bacterial abundance, affect community composition and influence ecosystem function in natural environments. Yet their dynamics have seldom been studied in engineered systems, or indeed in any system, for long periods of time. We measured virus abundance in a full-scale activated sludge plant every week for two years. Total bacteria and ammonia oxidising bacteria (AOB) abundances, bacterial community profiles, and a suite of environmental and operational parameters were also monitored. Mixed liquor virus abundance fluctuated over an order of magnitude (3.18 × 108 – 3.41 × 109 virus’s mL-1) and that variation was statistically significantly associated with total bacterial and AOB abundance, community composition, and effluent concentrations of COD and NH4+- N and thus system function. This suggests viruses play a far more important role in the dynamics of activated sludge systems than previously realised and could be one of the key factors controlling bacterial abundance, community structure and functional stability and may cause reactors to fail. These finding are based on statistical associations, not mechanistic models. Nevertheless, viral associations with abiotic factors, such as pH, make physical sense giving credence to these findings and highlighting the role that physical factors play in virus ecology. Further work is needed to identify and quantify specific bacteriophage and their hosts to enable us to develop mechanistic models of the ecology of viruses in wastewater treatment systems. However, since we have shown that viruses can be related to effluent quality and virus quantification is simple and cheap, practitioners would probably benefit from quantifying viruses now

    Enhancement of low-mass dileptons in heavy-ion collisions

    Get PDF
    Using a relativistic transport model for the expansion stage of S+Au collisions at 200 GeV/nucleon, we show that the recently observed enhancement of low-mass dileptons by the CERES collaboration can be explained by the decrease of vector meson masses in hot and dense hadronic matter.Comment: 12 pages, RevTeX, 3 figures available from [email protected]

    Rapid cooling of magnetized neutron stars

    Get PDF
    The neutrino emissivities resulting from direct URCA processes in neutron stars are calculated in a relativistic Dirac-Hartree approach in presence of a magnetic field. In a quark or a hyperon matter environment, the emissivity due to nucleon direct URCA processes is suppressed relative to that from pure nuclear matter. In all the cases studied, the magnetic field enhances emissivity compared to the field-free cases.Comment: 9 pages; Revtex; figure include
    • 

    corecore